STARS of MPEG decoder: a case study in worst-case
analysis of discrete-event systems

Felice Balarin
Cadence Berkeley Labs

felice@cadence.com

ABSTRACT

STARS (STatic Analysis of Reactive Systems) is a method-
ology for worst-case analysis of discrete systems. Theoretical
foundations of STARS have been laid down (1, 2, 3], but no
implementation has been presented so far. We introduce
an implementation of STARS as an extension of YAPI, a
programming interface used to model signal processing ap-
plications as process networks [7]. We apply STARS to a
YAPI model of an MPEG decoder. We show that worst-
case bounds computed by STARS are quite close to sim-
ulated values (within 15%). We also show that additional
effort by the designer required to build STARS models is
very small compared to effort of building the YAPI simula-
tion model, and that the run times of STARS are negligible
compared to the simulation run times.

KEY WORDS: system verification, worst-case analysis,
static analysis

1. INTRODUCTION

STARS (STatic Analysis of Reactive Systems) is a method-
ology for worst-case analysis of discrete systems. Theoretical
foundations of STARS have been laid down in [1, 2, 3]. It
can be used to verify different properties of systems, such
as power consumption, timing performance, or resource uti-
lization. It consists of three main phases:

1. choosing an abstract representation of signals, called a
signature,

2. building abstractions (called o-abstractions) of system
components,

3. analyzing o-abstractions and interpreting results.

The main results of [1, 2] are the properties that signatures
and o-abstractions must satisfy in order for STARS to pro-
duce valid worst-case bounds. An ordering must be defined
in the domain of signatures, so that it can be precisely deter-
mined if a signal is “worse” than the-other one. In addition,

. Permission to make digital or hard cbpics of ali or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

CODES 01 Copenhagen Denmark

Copyright ACM 2001 1-58113-364-2/01/04...$5.00

104

signatures need to preserve sufficient information such that
the usage of resource of interest (e.g. time, power, memory
bandwidth, ...) can be accurately estimated.

The main requirement on o-abstractions is that they be con-
servative predictor of the system behavior, i.e. they need to
predict a system response that is at least as “bad” as the real
response. If o-abstractions are not conservative, then results
of STARS might not be worst-case bounds (in other words,
they are useless). Checking whether a o-abstraction is con-
servative is an instance of a classic verification problem:
“Is every behavior of an implementation (in this case, the
system) consistent with the specification (o-abstraction)?”.
Therefore, it can be solved by one of the usual approaches:
by construction, by formal verification, or by simulation.

Solution by construction means that o-abstractions are au-
tomatically generated from system specifications. While this
approach has been pursued for a limited class of systems [3],
in general, automatic abstraction is provably untractable.
Solution by formal verification has the usual pluses and mi-
nuses, the promise of a complete verification on one hand,
and very limited capacity in practice on the other hand.

Solution by simulation is never complete, because exhaustive
simulation is not feasible. Nevertheless, it is the mainstay
of verification, and often the only available option. In this
paper, we describe an environment which allows both sim-
ulation-and STARS, so that the same o-abstraction can be
verified by simulation and used by STARS. More precisely
we extend the simulation environment YAPI [7] with notions
of counters, o-abstractions, and monitors. Counters, both
built-in and user-defined, count the number of occurrences
of interesting events in the system. The purpose of counters
is to define signatures, and as such they are used by o-
abstractions, The purpose of monitors is to check whether
the values in & current simulation run satisfy the bounds
given by a o-abstraction. In other words, monitors check if
o-abstractions are indeed conservative.

In YAPI, systems are modeled as concurrent processes that
com icate by exchanging tok STARS is used to com-
pute an upper bound on the number of generated tokens in a
given time interval. This information can be useful in many
ways. It is often not hard to relate the number of tokens
to the number of memory accesses, or the energy needed to
process the tokens. Therefore, a maximum number of to-
kens in a given time period can be used to bound power and

memory bandwidth in that period. Another use of STARS
results is to check the quality of simulation test-sets. If the
number of generated tokens in a simulation is close to the
bound computed by STARS, we can be quite confident that
those test vectors indeed stretch the system resources to the
maximum. If that is not the case, the designer may try
using STARS results as a guideline in developing a more
challenging test-set.

In principle, our approach could be applied to other discrete
event simulators, such as Ptolemy [4] or VCC [5]. However,
YAPI does have a couple of advantages. Firstly, it is just
& C++ class library, so it is easily extendible. Even more
importantly, we have available a YAPI simulation model of a
substantial realistic design, namely an MPEG decoder. This
enables us to obtain practical information about the quality
of STARS results, and the effort of building o-abstractions.

The rest of this paper is organized as follows: first, in Sec-
tion 2 we give an overview of YAPI and the MPEG decoder
design we use. Then, in Section 3 we propose extending
YAPI to facilitate STARS. We present experimental results
in Section 4, and give some final conclusions and ideas for
future work in Section 5.

2. YAPI AND THE MPEG DECODER

YAPI is & programming interface used to model signal pro-
cessing applications. In YAPI, systems are represented as
networks of communicating processes. A process communi-
cates with other processes through input and output poris.
A process can read tokens from an input port, and write
tokens to an output port. A channel connects an output
port of some process to an input port of some other process.
Each channel is an infinite FIFO queue.

YAPI, as defined so far, is a variant of Kahn process net-
works. In addition, YAPI allows a process to select a port
with available tokens from a list of ports. This feature
makes YAPI non-deterministic (unlike Kahn process net-
works). However, it is indispensable for modeling reactive-
ness, such as user interaction.

A YAPI model of an MPEG decoder is shown in Figure 1.
The model was first presented in [8]. It is intended to
represent functional decomposition of the decoding process,
rather than the architecture of the implementation. This is
typical in the design methodology based on YAPI, where ap-
plications and architecture are modeled separately, so that
multiple architectural mapping can be explored for a given
application.

An example of a YAPI process is shown in Figure 2. It is an
excerpt of the specification of Tvld module from Figure 1.
For brevity, some code has been deleted (comments // ...
mark locations of deleted code). The module is represented
by the class Twld. Like any module representation in YAPI,
Tuld is a refinement of class Process. Its inputs include
Tvld_bits_In of type unsigned char, and Tvld_cmd_In of type
int. Its outputs include Thdr.status.Out of type unsigned
int. Every refinement of Process must have the main() func-
tion defined. When the module has to be executed, the sim-
ulator calls that function. A module can also have some
auxiliary functions defined, like bit_NeztStartCode() in case

class Tuld : public Process {

"/ ..
InPort<unsigned char> Tvld bits_In;
InPort<int> Tvld_cmd_In;
OutPort<unsigned int> Thdr_status.Out;

void main();
unsigned int bit_NeztStartCode();

void sigmaAbs(double T); // used

counter nextCodeResp; // by

counterRef nextCodeCmd; // STARS
Y

void Tuld::main() {
while(1) {
read(Tvid_cmd_In,cmd);
switch(emd) {
case CMD_NEXTSTARTCODE:
neztCodeResp+ +;
write(Thdr_status_Out, bit_NeztStartCode());
break;
/) e
11}

Figure 2: A YAPI process.

of Tvld. The rest of Tvid definition shown in Figure 2 is an
extension of YAPI for STARS, and will be explained in the
next section.

The main() function of Tvld is a typical for a server mod-
ule. In an infinite loop, it reads a token carrying a request
(by executing read(Tvld_emd_In,cmd), where emd is an inte-
ger member of Tvid), and than performs appropriate action
(e.g. write a token with value bit_NeztStartCode() to port
Thdr.status.Out).

3. YAPI EXTENSIONS FOR STARS

In this section, we present STARS-YAPI, an extension of
YAPI that enables verification of o-abstractions by simula-
tion, as well as performing STARS. The first extension is
used to define signatures. In general, signatures are func-
tions of system executions. They have to satisfy two basic
requirements:

1. it must be possible to compare them, i.e. a partial
order must be defined on their ranges,

2. they must be monotone, in the sense that the signature
of a segment must be smaller than a signature of the
whole execution.

In STARS-YAPI, signatures are vectors of counter values.
For every port in the system there is a built-in counter which
counts the number of tokens transmitted through that port.
The user can also extend the signature by defining addi-
tional counters, counting the number of occurrences of some
other relevant events (e.g. the number of times certain event
carries some particular value).

105

Yo

F b

P WRE D08 1, mos

wiiteh

—tmemblan_plc 7| TMmomMan

Figure 1: MPEG decoder

It is not hard to see that vectors of counter values satisfy
two necessary conditions for a signature:

1. component-wise comparison is a partial order,

2. the values of counters (i.e. the number of produced
and consumed tokens) can only increase if an execution
segment is extended.

The counters are used to build abstractions of systems. How-
ever, the counters provide only a limited information about
the system behavior, and thus the resulting system abstrac-
tion can be only of limited precision. If a more refined ab-
straction is desired, the user can define additional counters
to keep extra information.

For example, module Tvld in Figure 2 has a user-defined
counter neztCodeResp. 1t is intended to count the number
of times Tuld responds to CMD_NEXTSTARTCODE com-
mand. This information is than used to bound the activity
of some other modules, such as Thdr. During the simula-
tion, STARS-YAPI automatically updates values of built-in
counter, but the user is responsible for updating user-defined
counters. For example, in Figure 2, neztCodeResp is explic-
itly incremented just before generating a reaction to com-
mand CMD_NEXTSTARTCODE.

Defining an additional counter is much like adding an addi-
tional output port to the module, except that this port is
not used in normal operation, but just provides additional
information needed to build an accurate abstraction. There-
fore, with only a slight abuse of notation, we use the term
output counters to denote both built-in counters associated
with output ports, as well as user-defined counters.

In our experience, by adding user-defined counters, it was
always possible to reach the desired accuracy of abstrac-
tion. However, it is not clear that this is true in general.
At present, we can neither prove that arbitrarily accurate
abstraction can be found if enough counters are added, nor
do we have an example where no number of counters can
preserve sufficient information.

While system signals are represented with signatures, sys-
tem components are represented with o-abstractions. In

-

signature

o-abstractiofr—>2>

Figure 3: o-abstraction must be conservative.

STARS-YAPI, each process has an associated o-abstraction.
Roughly, its purpose is to compute bounds of output coun-
ters based on the values of the input counters.

A o-abstraction is valid if it is a conservative predictor of
module’s behavior. That means that for any sequence of in-
puts (and any segment of that sequence), the predicted out-
put signature computed by a o-abstraction must be larger
than the signature of actual outputs. This requirement is
presented graphically in Figure 3. Equivalently, we may say
that the o-abstraction must be an abstract interpretation [6)
of the original module.

In some cases, an accurate o-abstraction requires more in-
formation about the module’s environment than what is pro-
vided by the number of tokens transfered through the input
ports. STARS-YAPI provides counter references as mecha~
nism to access that additional information. Counter refer-
ences are like pointers to counters in other components, ex-
cept that they allow “read-only” access, i.e. access through
counter references does not allow changing the value of a
counter.

For example, to bound neztCodeResp in Tvld, it is useful
to know a bound on how many CMD_NEXTSTARTCODE
commands can Tuld get at its inputs. If such & counter exists
in the module producing commands for Tvid, the user can
connect it to the counter reference neztCodeCmd.

Counter references help maintain the modularity of specifi-
cation. Using neztCodeCmd allows the same o-abstraction

106

votd Tuld::sigmaAbs() {
tf(neztCodeCmd.is_connected()) {
neztCodeResp.set_bound(
min(Tvld bits_In/§, neztCodeCmd)
)i
} else { .
) neztCodeResp.set_bound(Tvld bits_In/4);

/o
}

Figure 4: o-abstraction of Tvid module.

of Tuld to be used in different environments. In the typical
intellectual property (IP) assembly design paradigm, Tvid
and its o-abstraction could be developed by the IP provider
and then re-used in many different applications. In this sce-
nario, the responsibility of the application designer would
Jjust be to connect a proper counter to neztCodeCmd. To do
this, the application designer must understand what kind of
information Tvid expects from neztCodeCmd, but this is no
different than connecting any other input or output port in
the assembly process.

In STARS-YAPI, every refinement of a class Process may
have a member function called sigmaAbs. The function sig-
maAbs returns no value, but its body should contain calls to
set_bound member function of all output counters. To com-
pute this bounds, sigmaAbs has access to input counters and
all member counter references. The bound of either inputs
or counter references can be accessed simply by putting the
name in an integer expression. In addition, counter refer-
ences have member function {s_connected() with the obvious
meaning. Trying to access a bound of a counter reference
that is not connected will cause an exception. Similarly, try-
ing to access & counter bound that has not been previously
set will also cause an exception.

For example, a fragment of the Tvld::sigmaAdbs is shown
in Figure 4. There are two bounds on neztCodeResp. The
first bound states that the number of responses to command
CMD_NEXTSTARTCODE cannot be larger than the num-
ber of commands received. The second bound can be estab-
lished because every response to CMD_NEXTSTARTCODE
consumes at least four tokens from the input Tvid_bits_In
(this fact can be deduced by analyzing the code of function
bit_NeztStartCode()). Therefore, if nezxtCodeCmd is con-
nected, the bound of neztCodeResp is set to the tighter of
two bounds. Otherwise, it is set to the only available bound.

The o-abstraction of the system as a whole is a collection
of o-abstractions of all system components. Together, they
. compute bounds on all output counters. Since the system
is closed and every counter is an output counter of some
component, the system g-abstraction (denoted by F) maps a
vector of counter values to another vector of counter values.

The basic theorem behind STARS states that if some vector
of counter values z is a fix-point of F, and z is larger than
the vector of initial counter values, then z is larger than the
signature of any execution [1]. Based on this result, STARS
solves ¢ = F(z) by iteration, using counter values in the

initial state as an initial solution. Since F' is guaranteed
to be monotone, the iteration will either converge or the
value of z will grow beyond any bounds. To prevent infinite
iteration, the user my specify a boundary value. If z reaches
that value, the iteration terminates with failure. However,
if the convergence is achieved before that, than z is a valid
worst-case bound.

STARS needs-only o-abstractions for its computation, and
it never executes modules’ main() functions. Therefore,
STARS cannot check any correspondence between two views
of the module (main() and sigmaAdbs()). For this purpose,
we extend YAPI with the concept called monitor. Each
Process has a monitor member function. Calling monitor at
any time during simulation creates a monitor object. Any
time an input of the module gets a new token, the moni-
tor object executes its sigmaAbs function. However, in this
context, mentioning an input counter has a slightly different
meaning. Rather than evaluating to a previously set bound,
a counter name in the integer expression evaluates to the ac-
tual increment in counter value from the moment the mon-
itor object was created until the current time. Also, when
set-bound is executed for some output counter, the monitor
checks whether the bound is indeed larger than the actual
(incremental) counter value. If not, a warning is reported.
Schematically, monitors perform the test as in Figure 3. In
addition, monitors report a warning if o-abstractions exhibit
non-monotone behavior.

Monitors are the key tool in developing o-abstractions. With-
out them, debugging o-abstractions would be almost im-

possible. They are also useful in ensuring that engineering

changes made to main() later in the design process do not

invalidate existing o-abstractions.

4. RESULTS

We have applied STARS to the MPEG decoder shown in
Figure 1. The purpose of that experiment was to test on are-
alistic example how accurate can STARS be, and how much
additional designer effort is needed to create o-abstractions.

The effort in building o-abstractions was very small com-
pared to the effort of specifying the design. Many blocks
of the design are of data-flow nature, where the number of
output tokens is the same as the number of input tokens,
and the block implements some complex signal-processing
algorithm. o-abstractions of such blocks are trivial. How-
ever, some blocks are more data~-dependent and the number
of output tokens depend on specific values of input tokens.
o-abstractions of such blocks are more complex, but still sig-
nificantly simpler than blocks themselves. Overall the code
for o-abstractions was less than 1% of the total code.

To test the accuracy of STARS, we have performed the fol-
lowing two-step experiment:

1. We have simulated the MPEG decoder using a par-
ticular video stream as an input. During simulation,
we have collected statistics on the relevant parameters
of the stream (the number of pictures, the number of
macro-blocks, ...).

2. We have used the parameters collected in step 1 as

107

output | simulation | STARS | difference

Yo | 2842560 | 3248640 14.3%
Uo | 1423296 | 1626624 14.3%
Vo | 1423206 | 1626624 14.3%
Sinfo 1 1 0%
vp0 14 16 14.3%

Table 1: Experimental results.

the worst-case values, i.e. we have built an environ-
ment o-abstraction in which the bounds of the picture,
macro-block and other counters are set to be exactly
the values collected in the simulation.

Obviously, the results produced by STARS in this experi-
ment are valid only as long as the input stream satisfles the
environment o-abstraction, which any sufficiently long input
stream will not. A more useful experiment would let the en-
vironment o-abstraction bound the rates, e.g. the maximum
number of pictures or macro-blocks per time unit, since such
- bounds can be valid for any input stream. In that case,
the STARS computes the maximum output rates, and even
mare importantly maximum rates of internal signals, which
in turn determine performance requirements of system re-
sources (e.g. processor speed and memory bandwidth).

Nevertheless, our experiment is well suited for the purpose of
checking STARS accuracy. Since the environment’s worst-
case behavior is assumed to be exactly the one of the sim-
ulated stream, STARS should ideally compute the output
bounds that are exactly equal to simulated values.! The
results of the experiment are summarized in Table 1. As
it can be seen from the table, the error is always less than
16%. This reasonable accuracy was accomplished with four
orders of magnitude lesser computation effort for simulation
(30s for simulation vs. 2ms for STARS). It is interesting
that the error is the same (in percents) for all the signals.
This suggests that all of the errors have a common root in
. & non-ideal abstraction of a single internal signal.

It is important to note that the error is due to & particular
choice of o-abstractions and not inherent is STARS. It is
quite possible that a more elaborate o-abstraction (perhaps
with addition of some extra counters) would result in more
accurate bounds. ‘ .

S. CONCLUSIONS

We have presented an implementation of STARS as an ex-
tension of YAPI, a programming interface used to model sig-
nal processing applications. In our approach, o-abstractions
used by STARS can also be exercised during simulation.
This facilitate keeping o-abstractions consistent with the
more detailed simulation model of the system. We use an
" MPEG decoder as & case study to indicate that a reasonable

!We cannot make this statement with absolute certainty. In
general, some other input stream with the same (or lesser)
signature, might produce the output stream with the larger
signature. If that is the case, then even the most accurate
o-abstractions should result in bounds larger than the simu-
lated values. However, our informal inspection of the system
lead us to believe that such an input stream does not exist.

worst-case bound can be obtained with a small increase in
designer’s effort, and with negligible computation resources.

In this paper, we have used STARS to bound only the num-
ber of tokens that are produced and consumed in the system.
A more interesting analysis would be to relate these numbers
to system resource usage, and compute the bounds on pro-
cessor time, memory bandwidth and energy consumption,
for example. YAPI is not sufficient for this purpose because
it contains no notion of architectural resources. However,
there are design environments (e.g. VCC [6]) where a func-
tional description like YAPI can be mapped to an architec-
ture description. We plan to extend STARS to such map-
ping to allow very rapid check if performance requirements
are met by a particular mapping.

Acknowledgments

1 am grateful to Erwin de Kock and Wido Krujitzer of
Philips Research and Jean-Yves Brunel of Cadence for pro-
viding access to YAPI and the MPEG decoder, generous
help during this work, and helpful comments on early drafts
of this. paper.

6. REFERENCES

[1] Felice Balarin. Worst-case analysis of discrete systems.
In Digest of Technical Papers of the 1999 IEEE
International Conference on CAD, November 1999.

[2] Felice Balarin. Worst-case analysis of discrete systems
based on conditional abstractions. In Proceedings of the
Seventh International Workshop on Hardware/Software
Codesign (CODES’99), July 1999.

[3] Felice Balarin. Automatic abstraction for worst-case
analysis of discrete systems. In Proceeding of DATE
2000 Conference. IEEE Computer Society, 2000.

[4] J. Buck, S. Ha, E.A. Lee, and D.G. Masserschmitt.
Ptolemy: a framework for simulating and prototyping
heterogeneous systems. Interntional Journal of
Computer Simulation, special issue on Simulation
Software Development, January 1990.

[6] Cadence virtual component co-design (VCC)
environment

http://www.cadence.com/datasheets/ vcc_environmont.iltml.

[6] P. Cousot and R. Cousot. Abstract interpretation: a
unified lattice model for static analysis of programs by
construction of approximation of fixpoints. In Proc. 4th
Ann. ACM Symp. on Principles of Prog. Lang. 1977.

[7] E.A. de Kock, G.Essink, W.J.M. Smits, P. van der
Wolf, J.-Y. Brunel, W.M: Kruijtzer, P. Lieverese, and
K.A. Vissers. YAPI: Applocation modeling for signal
processing systems. In Proceedings of the 37th
ACM/IEEE Design Automation Conference, pages
402-405, June 2000.)

[8] P. van der Wolf, P. Lieverese, M. Goel, D.L. Hei, and
K.A. Vissers. An MPEG-2 decoder case study as a
driver for a system level design methodology. In
Proceedings of the Seventh International Workshop on
Hardware/Software Codesign (CODES’99), July 1999.

108

